Ученые выяснили, какие данные помогут AI и врачам искать правильное лечение

В Nature Machine Intelligence вышла статья том, какие данные использовать для моделей медицинских вмешательств и почему стоит оценивать их переносимость (transportability).

Оставить комментарий
Ученые выяснили, какие данные помогут AI и врачам искать правильное лечение

В Nature Machine Intelligence вышла статья том, какие данные использовать для моделей медицинских вмешательств и почему стоит оценивать их переносимость (transportability).

Большие данные, ИИ и машинное обучение в медицине помогают оценить риск заболевания или сделать диагностику быстрее и точнее. Однако помимо этих задач в медицине также важна оценка вмешательств и расчет альтернативных сценариев.

Например, нужно не просто получить риск смертности пациента, которому предстоит операция, но и персонализировать процедуру — подобрать дозу лекарства или время его введения с максимальной вероятностью положительного исхода. 

Общая задача — оценить эффект X при принятии действия Y и без. Среди разных вариантов действия нужно выбрать такие, которые минимизируют вред для пациента и увеличивают пользу. Когда модель машинного обучения располагает знаниями о переменных, влияющих на предполагаемые причинно-следственные отношения и достаточным количеством сгенерированным случайным образом данных, охватывающих все возможные сценарии, возможно рассчитать причинно-следственные связи. Ключевое для избежания ошибочных выводов: знание предметной области (домена) и рандомизация. 

Типы данных, которые следует использовать для выведения причинно-следственных связей в моделях медицинских вмешательств

Лучше использовать данные рандомизированных контролируемых испытаний, так как в них исследуемые субъекты распределяются в группы случайно. В данных, собранных ретроспективно (например, электронных медицинских картах) довольно отрывочные сведения и возможны разные типы смещения. Разработка моделей медицинского вмешательства на основе данных наблюдений (даже, если их и очень много) проблематична из-за природы самих данных. 

Разработка моделей медицинских вмешательств требует тщательного рассмотрения причинно-следственных связей. При использовании данных наблюдений сложно распознать все потенциальные источники смещения. 

Оценка «переносимости» (transportability) модели 

Переносимость — это математическая оценка переноса причинно-следственных связей, изученных в ходе эксперимента (например, рандомизированного контролируемого испытания) на новую популяцию, за которой могут проводиться только наблюдения. Например, ее можно использовать для определения того, как астма или последствия старения переносятся от одной популяции к другой.

Авторы рекомендуют оценку переносимости модели для заданных наборов действий — например, вариантов лечения или оценки рисков. Они считают, что оценка переносимости может стать ключевым инструментом для моделей медицинских вмешательств. 

Хотите сообщить важную новость? Пишите в Телеграм-бот.

А также подписывайтесь на наш Телеграм-канал.

Горячие события

Открытая технологическая конференция ISsoft Insights 2021
19 июня

Открытая технологическая конференция ISsoft Insights 2021

Читайте также

IBM открыла датасет для обучения AI программированию
IBM открыла датасет для обучения AI программированию
IBM открыла датасет для обучения AI программированию
В Беларуси запустили цифровой медсервис MedElement
В Беларуси запустили цифровой медсервис MedElement
В Беларуси запустили цифровой медсервис MedElement
Пентагон разработал микрочип для ранней диагностики коронавируса
Пентагон разработал микрочип для ранней диагностики коронавируса
Пентагон разработал микрочип для ранней диагностики коронавируса
В Китае сделали AI-цензор для фильтрации неугодного контента на базе алгоритма Google. Эффективность — 91%
В Китае сделали AI-цензор для фильтрации неугодного контента на базе алгоритма Google. Эффективность — 91%
В Китае сделали AI-цензор для фильтрации неугодного контента на базе алгоритма Google. Эффективность — 91%

Обсуждение

Комментариев пока нет.
Спасибо! 

Получать рассылки dev.by про белорусское ИТ

Что-то пошло не так. Попробуйте позже